Adaptive Image Compressive Sensing Using Texture Contrast
نویسندگان
چکیده
منابع مشابه
Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملCompressive Sensing and Low Contrast Detectability
Introduction: Compressive Sensing (CS) is a powerful data acquisition and reconstruction paradigm that has facilitated the substantial acceleration of several MRI applications with little compromise in image quality [1,2]. To date, the most successful applications of CS to MRI have focused on situations where the information of interest is represented by high-contrast features (e.g. contrast-en...
متن کاملAdaptive Compressive Sensing of Images Using Spatial Entropy
Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome these negative effects, we propose an Adaptive Block Compressive Sensing (ABCS) system based on spat...
متن کاملBeamforming using compressive sensing.
Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but toler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Digital Multimedia Broadcasting
سال: 2017
ISSN: 1687-7578,1687-7586
DOI: 10.1155/2017/3902543